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Abstract: 

Pakistan is one of ten countries in the world which are likely to be strongly affected by climate 

change and face very serious food security issues. The variability in temperature and 

precipitation diversifies the geographical expediency of lands for crop cultivation. This research 

used the (Maxent) model based on maximum entropy approach to predict the climate change 

impact and land suitability for wheat production in Pakistan. Wheat is by far a significant and 

major staple food in Pakistan. Wheat occurrence location data and bioclimatic variables for two 

climatic scenarios Representatives Concentration Pathways (RCP) 4.5 and 8.5 from five general 

circulation models (GCMs) are used for the year 2070. The main factors that affect the 

distribution of wheat, according to the study, are temperature seasonality, annual precipitation, 

and mean temperature of the warmest quarter. The findings indicate an average decline in highly 

suitable and moderately suitable areas while a boost in the least suitable area in future scenario. 

The highly suitable area for future distribution accounts for 26.78% and 19.67% of RCP 4.5 and 

RCP 8.5 respectively; which shows a negative impact on prospective wheat production in 

Pakistan. The outcome of this study is of utmost significance for policy makers to create suitable 

adaptation and mitigation protocols needed to maintain wheat productivity in the face of 

changing climate. 
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Chapter 1: Introduction 

 
Wheat Triticum aestivum L. is the most significant and highly nutritious cereal crop, widely 

grown under various agro-ecological conditions and cropping patterns around the globe (Tiwari 

& Shoran, 2010; Simmons et al., 2020). It is the second maximum harvested and produced crop 

around the world. The majority of the people in Pakistan prefer wheat, which is a significant 

food crop in the country. It is an important agricultural commodity, used as a staple food. It is a 

significant industrial crop that is used to make savoury snack foods, biscuits, bread, feed, 

noodles, and confections. Wheat stalk are also used as animal bedding and in construction 

material (Oyewole, 2016). Wheat as a major staple food provides more nourishment and calories 

than any other crop in the world (Guarin et al., 2019). Wheat tends to occupy a vital position in 

the sector of agriculture as it is a primary food crop along with being the fundamental cash crop. 

The demand of wheat has been increasing with the passage of time as the population has also 

been increasing around the globe (Gul et al., 2019). 

Wheat is grown in 122 countries of the world. The leading wheat-producing countries include 

China, India, Russia, the United States, Pakistan, Egypt, Turkey, Iran, United Kingdom, Brazil, 

Algeria, Morocco, Indonesia, Ukraine and Uzbekistan (Fig 1). China has appeared as the biggest 

wheat producer and accounted for 16% share in global wheat production followed by India, 

(12.5%)   (Fei et al., 2020). Approximately 220 million hectares of farmland around the world 

and 21% of the world’s population relies on wheat crop (Zheng et al., 2020). 
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Figure 1.1: Leading wheat producers worldwide in 2021/2022 

 

Source: Statista 2022 

 

It can be seen that China produces the highest amount of wheat (148,000 thousand metric tons 

TMT) followed by India (109,878 TMT). However, Uzbekistan contributes the least share in the 

global net wheat production. 

The international production of wheat is different around the globe because of the variation in 

temperature and various climatic conditions throughout the world. Climate is the average 

weather condition of a particular place which determines not just the yields of cultivated crops 

but also major cultural practices and occurrence of illnesses and pests (Oyewole, 2016). It poses 

imperative global environmental impacts and undesirable outcomes in every aspect of human 
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life. According to the United Nation Framework Convention on Climate Change (UNFCCC), 

climate change is defined as; an alteration occurs in climate of a specific place which is directly 

and indirectly associated with anthropogenic activities that can change the atmospheric 

composition (Janjua et al., 2014). 

The security of food sources and its long term sustainability will become more challenging for 

world’s growing population as it alters the harvested conditions for crops (Brooks, 2020). 

According to various scholars climate change has an impact on crop distribution at local, 

regional and global scales. Throughout history, the majority of populations relied on local or 

regional food production. Climate change has declined the worldwide wheat and corn production 

by 5.5 and 3.8 percent, respectively. The production potential of many crops has also been 

decreased in Europe and other parts of the world as well (Fei et al., 2020). 

Although climate change is a worldwide phenomenon but it has more influence on developing 

countries due to their increased susceptibility and limited capability to reduce the impacts of 

climate change. Pakistan and other developing countries have agriculture based economies and 

because of   the direct exposure to nature their agriculture sector is most affected (Ali et al., 

2017). 

Man-made climate change is predicted to have quite a few negative outcomes, amongst them a 

range shifts and extinction of species and increase in extreme weather events, which ultimately 

have adverse outcomes on biodiversity and ecosystem functioning (Easterling et al. 2000; 

Balvanera et al. 2006). However, the consequences on the distribution and productivity of crops 

will pose the biggest and most immediate threat to human communities and economy (Beck, 

2013). 
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Agriculture being associated with economic activity is extremely responsive to climate change, 

as its whole procedure relies upon climatic variable. Climate change threatens future agricultural 

production due to variations in rainfall, temperature and precipitation. Extreme weather events 

also have adverse effects on agricultural productivity. In order to cope with adverse climate 

impacts on crops, it is necessary to figure out the potential distribution of crops in a changing 

climate (Müller et al., 2016). 

Furthermore, climatic factors i.e. variation in radiation, precipitation, temperature, greenhouse 

gas concentrations, and water scarcity have affected agricultural production to a great extent 

(Dubey & Sharma, 2018). The rise in temperature, increasing droughts, and decreased 

precipitation, along with reducing soil moisture, has been drastically affecting the agricultural 

production globally (Syeda, 2017). According to various scholars, future agricultural 

productivity might decrease as a result of rising temperatures, especially in semi-arid and arid 

regions like Pakistan (Ahmed & Schmitz, 2011). Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) demonstrated that climate change is 

probably going to change potential distribution of crops around the globe, which is likely to 

further increase the amount of land that is suitable for farming in higher latitudes in the Northern 

Hemisphere and decrease it in tropical regions(Barros & Field, 2014). 

Wheat is an adaptive crop towards dynamic climatic conditions. Although, it best thrives under 

temperate climate, but high temperature limits the crop yield. The prime factors which limit the 

wheat production are mainly temperature and precipitation. The optimum growing temperature is 

about 25°C, with minimum and maximum growth temperatures of 3 to 4°C and 30 to 32°C, 

respectively. Wheat is adaptive to a broad range of moisture conditions and can be grown in 

most locations where precipitation ranges from 250 to 1750mm (Kumar et al., 2020). The 
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findings of the IPCC display that increase in global temperature during the period 1990 to 2100 

will be the most unprecedented as compared to the past 10,000 years (Syeda, 2017). Temperature 

requirements for wheat play a crucial influence in site selection for wheat cultivation, in addition 

to temperature requirements, well-drained fertile loam sand to medium texture clay loam and 

areas with low night temperatures are optimum for growing wheat. 

Carbon dioxide is one of the most vital prime factors which drive the climate change. CO2 

concentration has been increasing day by day due to anthropogenic activities (Sabella et al., 

2020). There are two significant causes behind this huge Greenhouse gas concentration. This 

massive greenhouse gas concentration is caused by two important factors. 

1. Developed countries increase the growth rate by the exploration of natural resources for 

expanding shares in international market. 

2. UNFCCC does not have legitimate climatic policy framework. Hence, due to these 

reasons CO2 concentration has been enhanced from 280 parts per million to 380 parts per 

million since the industrial revolution (Janjua et al., 2010). Now it is 414 ppm. 

Wheat is often grown in Pakistan during the winter, ideally in November. Approximately 90% of 

wheat is grown on irrigated land and water requirements ranges from 20-21 per acre. In Punjab 

and Sindh wheat is mostly grown on irrigated land while small amount of winter wheat is also 

cultivated in northern parts of the country (Janjua et al., 2014). 

According to the agricultural experts, loamy and clayey soil is best for growing wheat where 

ground surface should be smooth to allow for equitable access to all crop fields for agricultural 

entrances. More than 2/3 of this crop is grown in Pakistan in locations with canal irrigation. It is 

grown on the following types of land: mountainous regions, semi-desert, deserts, and land 
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irrigated by canals. According to the facts and figures of the economic survey of Pakistan 2013- 

14, more than 25 million tons of wheat was produced in Pakistan. Wheat is harvested in a 

number of significant areas in Pakistan, including: 

Punjab: Dera Ghazi Khan, Multan, Sahiwal, Faisalabad, Sargodha, Muzaffargarh, Jhang, and 

Bahawalpur. 

Sindh: Hyderabad, Sukkur, Khanpur, Nawabshah. 

 

Khyber Pakhtunkhwa: Mardan, Peshawar, Charsadda, Bannu, Dera Ismail Khan. 

Balochistan: Khasdaar, Lorelai, Naseerabad, Kalat. 

Irrigation can be taken as a climate adaptation approach to mitigate the unfavorable impacts of 

climate change and to boost the wheat yield. It is commonly found that crop productivity is 

higher on irrigated land as compared to the rain-fed crop productivity. Some scholarly articles 

demonstrated that irrigation is helpful to reduce the harmful impacts of extreme heat. But 

however, it remains constrained in some parts of the world such as Asia where temperature have 

harmful effects on irrigated yield and also due to the physical availability of water. Moreover, 

Irrigation provides a positive response towards changing climate and gives details on how 

growing water shortage is anticipated to affect future crop yields and also elaborate the 

relationship between weather and water stress (Zaveri & Lobell, 2019). 

Wheat is one of the most important “Rabi” crop and its production has reached over 26.394 

million tonnes during 2021-22 which has displayed in the following figure. In Pakistan wheat 

crop constitutes 7.8% of the additional value in the field of agriculture as well as 1.8% to Gross 

Domestic Product (GDP) as its demand has been increasing day by day. Moreover, the crop 
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production has been decreased from 27.464 million tonnes to 26.394 million tonnes, showing the 

decline in the crop production as compared to the previous year 2020-21. During 2021-22, area 

sown decreased to 8,976 thousand hectares (2.1 percent) against last years of 9,168 thousand 

hectares (Pakistan Economic Survey 2019-2020). 

 

 
 

Figure 1.2: Wheat production in Pakistan from year 2017-2022 (000 Tonnes) 

Source: Pakistan Economic Survey 2021-2022 

In Pakistan per acre land produces approximately 1200 to 1500 kg of wheat nowadays. 

Punjab (71.17 %) is the major production area, followed by the Sindh province (13.38 %). Wheat 

is the major cereal crop produced in Punjab, putting Pakistan 8th among the wheat producing 

countries. 

Wheat yield in many regions around the world is expected to decrease under future climate 

change scenarios.  These  potential climate change impact assessments can  be beneficial  for 
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designing adaptation (Araya et al., 2020). Increasing demand of wheat production is a serious 

challenge for the future so there is a dire need to use such techniques which will amplify the 

wheat production as a mean to feed the world’s growing population (Tiwari & Shoran, 2010). 

In order to deal with this issue different scientists have devised various models to gauge the 

implications of changing climate on the production and distribution of wheat yield. Crop models 

approaches are regarded as crucial instruments to investigate and evaluate the possible climate 

change impacts, because they are used to connect the various environmental variables and crop 

development processes that are specifically susceptible to climate change (Kheir et al., 2019). 

Recently multiple modeling approaches have been employed to examine the suitability of land 

for crops production due to advancement in geographic information systems (Kogo et al., 2019). 

For determining the potential distribution of crops we use Ecological niche models. These 

models are proving to be promising. The relationship between a species' known distribution and 

its environmental parameters is investigated using ENMs (Yue et al., 2019). Ecological niche 

models have been used to evaluate and map bioclimatic conditions for the distribution of crops 

under changing environment (Negrini et al., 2020). These models are often used in multiple 

ways, to predict and estimate the suitable habitat acquired by species in a known region, the 

estimation of suitable habitat acquired by species in an unknown region and also the changes 

caused by environmental factors over time and estimate the habitat acquired by those species 

under such climatic conditions (Warren & Seifert, 2011). 

Among these models, the Maxent model, which predicts the prospective distribution of 

agricultural products, is one of the most effective and widely used model (Jayasinghe & Kumar, 

2019). Maxent is a software programme that uses the maximum-entropy principle to estimate 
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species distributions from recent species records. Maxent is a software application supported on 

the maximum-entropy regulation for modeling species’ distributions from current species records 

(Yue et al., 2019). It has been widely used all around the world on the account of its handy and 

easy to use software packages for a mixed bag of constructive purposes (Warren & Seifert, 

2011). 

1.1 Objectives of the Study: 

 
The aims of the study are to: 

 

1. Assess the current distribution of wheat in Pakistan based on the calibrated datasets by 

using ENM (Maxent) 

2. Explain the dynamic changes in wheat distribution and range as a consequence of 

forthcoming climate change impacts by employing the Maxent model. 

3. Evaluate the current and future climatic impacts on wheat production by taking various 

environmental variables (temperature and precipitation). 

4. Delineating the areas for the potential gain and loss in the wheat production with future 

climate scenarios. 

1.2 Significance of the study: 

 
Pakistan is a major wheat producer facing threats towards dynamic climate change. This 

study will help to evaluate the future potential distribution of Triticum aestivum L. by using 

its current distribution that will assist policy makers and decision makers to deal with future 

negative climate impacts on wheat crop. Moreover, as an agricultural country Pakistan 

should be able enough to increase crop production in our region to meet domestic demand 

and export surplus quantity in order to boost our economy. 
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Chapter 2: Literature review: 

 
Ecological niche models (ENMs) have been used to assess the future distribution of species in a 

specific geographical area by evaluating the current distribution of species under changing 

environment. In order to comprehend the specie distribution of Triticum aestivum L, numerous 

investigations have been carried out using various modeling techniques and ecological niche 

modeling analysis. 

A study was directed by (Araya et al., 2020) to understand the impacts of climate change on 

wheat production in Ethiopia. They used CROPSIM-CERES wheat model along with GIS tool 

by taking a variety of environmental variables. The presented results indicate that increase in 

carbon dioxide concentration and nitrogen fertilizers decrease the negative climatic impacts in 

most areas of Ethiopia. But, wheat yield reduced in those areas where drought and heat 

conditions exist regardless of the increase of CO2 and nitrogen levels. However, Nitrogen 

fertilizer did not increase yields under low rainfall conditions. So this investigation gives crucial 

information about climate change impacts and suggests some appropriate recommendations for 

scientists, professionals experts and policy makers (Araya et al., 2020). 

This study was conducted by (Fei et al., 2020) to assess the climate change impacts on China's 

three main crops (wheat, maize, and rice). They employed the Extreme-Point Symmetric Mode 

Decomposition (ESMD) model and the Agro-Ecological Zone (GAEZ) for this investigation, 

which covered the years 1960 to 2010. The findings of the model displays that changing climate 

increased the rice and maize production potential while reduced the wheat yield in China. This 

was just because of the difference in maximum and minimum temperature range. Unlike 

temperature, rainfall had consequential harmful impacts on the production potential of all three 

crops. These outcomes recommend that preference should be given to such areas that need 
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adjustment in its cultivation zone and provide necessary information for adaptation strategies for 

rice and maize under changing climate. For the sustainable and ensured food security there is a 

need to enhance the agricultural infrastructure and mitigate the negative climate change impacts 

of reduced rainfall and increased daytime temperature (Fei et al., 2020). 

Another study was conducted by (Harkness et al., 2020) in UK for the investigation of 

unfavorable weather events which may have a negative impact on wheat production of UK due 

to changing climate. They examined 10 unfavorable weather indicators, by taking climate 

scenarios in combination with global climate models (GCMs) and two greenhouse gas emissions 

scenarios (RCP4.5 and RCP8.5). The result shows that future adverse weather events decrease in 

UK which has positive impact on wheat production by mid-20th century. The impact of drier 

summer improved growth patterns and decreased waterlogging. Although drought severity can 

remain lower in 2050 but it is recommended to evaluate the drought at a smaller scale. Climate 

change scenarios and global circulation model displays uncertainty in weather events might 

cause some climate change issues in future (Harkness et al., 2020). 

Wheat and rice are the two fundamental food and cash crops worldwide. This study was carried 

out by (Kumar et al., 2020) in Uttar Pradesh and Haryana to thoroughly examine the climate 

change impacts on wheat and rice by using time series analysis. For this analysis they used 

Ricardian multi-regression approach and Cobb-Douglas production function approach. Different 

climatic and socio economic variables were taken such as irrigated area, forest area, maximum 

and minimum temperature range and precipitation, literacy rate of farmers, population density of 

the area, use of fertilizer, tractor and tools. Generally the result shows that increased rainfall, 

maximum and minimum temperature had a negative effect on wheat and rice in both states of 

India. Additionally this is not necessary that climate indicators have similar impacts on both crop 
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yields. In can also be concluded that climate change impacts become more threatening after 1991 

due to changes in non-climatic indices. The result based on Ricardian model figure out that there 

is a nonlinear relationship between variables and crop productivity. So this analysis implied that 

Ricardian model is found to be a satisfactory and suited approach to investigate the climate 

change impacts on crops (Kumar et al., 2020). 

A detailed study on climate change conducted by (Schierhorn et al., 2020) undermined cereal 

production globally, specifically in semiarid regions where temperature change or fluctuation in 

rainfall or extreme heat may have large impact on cereal production. Kazakhstan is the biggest 

producer and exporter of cereals in Central Asia. The study's primary goal was to assess the 

effects of climate change on the average temperature, precipitation and heat on barley and wheat 

yields. Data were taken from 1980 to 2015 by using fixed-effect panel regressions model in the 

northern part of Kazakhstan. The results indicate that observed changes in climate change have 

decreased wheat and barley yields in the western part of Kazakhstan which can be compensated 

by positive effects in the eastern part of Kazakhstan. Extreme heat events had also limited effect 

on both wheat and barley yields. Policy makers and investors should carefully decide whether to 

carry on this cereal farming or to take some alternative agricultural practices for the areas that 

have already been negatively impacted by climate change (Schierhorn et al., 2020). 

To determine the negative impacts of ozone concentration on wheat crop, (Guarin et al., 2019) 

carried out this study in Mexico by using O3-modified DSSAT-N Wheat crop model along with 

baseline data from 1980 to 2010 and five Global Climate Models (GCMs) under the 

Representative Concentration Pathway (RCP) 8.5 scenario. They selected thirty-two wheat 

producing areas for simulation by giving both irrigated and rain-fed conditions. The results 

shows that the impact of ozone concentration on wheat crop varied but overall simulations show 
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decreased production due to the enhanced ozone concentration in all scenarios. It can be 

concluded that wheat production loss due to ozone concentration is larger than the loss which is 

due to change in precipitation, temperature and carbon dioxide concentration in Mexico. 

Therefore, it is necessary to include the ozone impacts as well in future agricultural impact 

assessments (Guarin et al., 2019). 

This study was presented by (Jayasinghe & Kumar, 2019) to evaluate the suitable tea growing 

areas in Sri Lanka by using MaxEnt modeling technique. They used 2 climate models MIROC5 

and CCSM4 under three representative concentration pathways for the year 2050 and 2070. The 

study displays that areas with high elevation show better response towards changing climate as 

compared to the low elevated areas which show loss of crop to a greater extent. The comparison 

of the suitable areas of current and future scenarios disclosed a decline of 8 percent, 17 percent 

and 10.5 percent in marginal, medium and optimal suitable areas respectively. This comparison 

revealed the fact that future climate change would have a negative impact on tea growing areas 

in Sri Lanka by 2050 and 2070 (Jayasinghe & Kumar, 2019). 

A review was carried out by (Kapur et al., 2019) to quantify the climate change impacts on 

wheat production and soil water balance in the Mediterranean region of Turkey. Wheat 

production in this region is already affected to a certain extent by irrigation development and 

water availability issues. To mitigate these issues they used regional climate models and general 

circulation model. Under future climatic conditions the wheat productivity decreases with the 

enhanced carbon dioxide concentration, regardless of the model used. It was concluded that due 

to climate change and increased concentration of CO2 the soil water demand also increased. But 

due to reduction in rainfall the actual evaporation and soil moisture would decrease 16.5% in 

future, regardless of its increasing demand. So this study highly recommended that water stress 



14  

must be handled using appropriate irrigation management approaches for the sustainable 

production of wheat in future (Kapur et al., 2019). 

The Egyptian North Nile Delta is a larger agricultural production area and is also most 

vulnerable to climate change due to higher temperatures and global sea level rise (Kheir et al. 

2019) conducted another study to estimate the impacts of climate change in arid and low 

elevated areas, i.e. coastal region. They have used CERES and N wheat model and data of two 

consecutive growing seasons during 2014/2015 and 2015/2016 which were calibrated using a 

local cultivar grown under irrigated conditions in Egypt. In can be seen that wheat productivity 

reduced by 17.6% as a result of increased temperature by 1°C to 4°C. However, the crop yield 

increased due to enhanced carbon dioxide concentration, and this could also offset some of the 

negative impacts of rising temperature. As this region is on costal area so sea level rise reduce 

the extent of agricultural land by 60% and put more challenge to wheat productivity in this 

region (Kheir et al., 2019). 

(Kogo et al., 2019) investigated the climate change impacts on the cropping systems and yields, 

in the state of Kenya by using Maxent (Maximum Entropy Model). This study was done to 

forecast how the productivity of maize would change in future due to a changing environment. 

Collected data were split into bioclimatic data and geographic distribution data for two climate 

change scenarios from two general circulation models for the year of 2070. The yearly mean 

temperature, annual precipitation, and the average temperature of the wettest quarter were the 

main variables found in this study. According to the study's findings, under various climate 

scenarios there would be an average rise in unsuitable areas of 1.9–3.9% and a drop in 

moderately appropriate areas of 14.6–17.5%. Change in suitable and highly suitable areas may 

increase. This research will give decision-makers the knowledge they need to develop adaptation 
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plans in response to a changing climate by illuminating the regional and temporal alterations in 

future maize farming (Kogo et al., 2019). 

For the very first time this study was conducted by (Santana Jr et al., 2019) to estimate the 

climate change impacts on the distribution of Dalbulus maidis (plant pathogen of maize crop) 

globally by using MaxEnt (specie distribution model). Three GCMs under two Representative 

Concentration Pathways were used in this study. The result shows that overall climate change 

will reduce suitability for D. maidis. However, its suitability also increases in some regions of 

the world. For instance, Peru, Argentina, Colombia, and Venezuela will have a small area that is 

highly suitable for this pest because it is predicted that these countries will have conditions that 

are highly suitable for this insect in some areas. This study suggested the policy makers or 

researchers to produce such varieties of maize crop that tolerate D. maidis in order to reduce 

their attack on crops (Santana Jr et al., 2019). 

Wheat is a prevalent food crop for the whole population of Turkey and uneven distribution of 

rainfall and the severe temperatures can cause climate change that has an effect on wheat 

production in this region. This study was carried out by (Vanli et al., 2019) to evaluate the 

climate change impacts on wheat by utilizing CERES-wheat crop simulation model. Data have 

been taken from eight surveyed farms from the area of interest for calibration and evaluation. 

They used climate model by taking two climate change scenarios for mid-century (2036–2065) 

and end-century (2066–2095). Results indicated that increase in temperature will decrease future 

crop production. This crop modeling approach gives very crucial information for the 

quantification of the climatic impacts and may guide stakeholders to take decisions for the 

reduction of the negative climate change impacts on food crop (Vanli et al., 2019). 
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(Yue et al., 2019) carried out another research to forecast the global potential distribution of 

crops under climate change. They used ecological niche models (Maxent) for land suitability and 

future distribution of wheat crop under various climatic scenarios. The results indicate that 

increase in temperature mostly affected wheat production globally. Wheat production is more 

favorable in the RCP 4.5 scenario than it is under the RCP 8.5 scenario. The suitability of land 

for wheat crop enhanced in some parts of the world included China, the United States, Europe, 

Canada, Russia, and Pakistan while, decreased land Suitability in Australia, southern India, 

central and eastern Africa. These outcomes revealed that northern hemisphere (higher latitude) 

will be more favorable for wheat cultivation and less suitable in tropical regions. We contend 

that over time, Climate change could alter the worldwide wheat trade and production patterns 

(Yue et al., 2019). 

Another study was conducted by (Zaveri & Lobell, 2019) to calibrate the contribution of 

irrigation as an adaptation strategies in response to changing climate to increase the wheat yield 

in India by using historical data across 40 years. Irrigation has been crucial strategy for 

increasing wheat yield as a significant crop in India. They predicted that yield in 2000s around 

the country are 13% higher than it would have been without irrigation in 1970s. Additionally, 

irrigated wheat possesses less sensitivity towards heat as compared to the rain-fed wheat 

production. However, the production from irrigation expansion in recent time period shows 

thatthe negative impacts have been increasing regardless of lower heat sensitivity from the 

widespread expansion of irrigation. It can be argued that improving yield increases in the face of 

future warming will likely provide a more challenging issue as restrictions on expanding 

irrigation become more stringent (Zaveri & Lobell, 2019). 
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Wheat is a major staple food of Pakistan and cultivated on a large scale in the country. The 

authors of this study (Ali et al., 2017) used feasible generalised least square (FGLS) and 

heteroskedasticity and autocorrelation (HAC) consistent standard error techniques to estimate the 

production potential of Pakistan's major crops (sugarcane, wheat, maize, and rice) for the years 

1989 to 2015. It can be seen that there was the variation of climatic impact on the major crops of 

Pakistan. The results show that increase in temperature negatively impacted on wheat production 

while a decrease in temperature had a favorable effect on all crops. The effect of precipitation on 

the crop yield is negative for all crops, except for wheat which shows positive response towards 

increased rainfall. To deal with the detrimental impacts of climate change, there is a dire need to 

use such techniques that will amplify the crop production in the state and should also develop 

drought and heat resistant variety for the sustainable food production not just in Pakistan but all 

over around the world (Ali et al., 2017). 

Wheat is the most significant grain crop in Bangladesh and cultivated mostly in parts of 

Dinajpur. This study was conducted by (Syeda, 2017) who used multiple regression models for 

the estimation of climate change impacts on wheat crop in this region. Historical climate and 

yield data were collected for this purpose. Three multiple regression models were used and 

various climatic variables including a dummy variable during wheat growing period. According 

to the findings of the model, highly prominent impact is found for the dummy variable. It gives 

information that better technology have a positive impact on production (Syeda, 2017). 

(Tack et al., 2017) carried out this study to elaborate the promising role of irrigation as an 

adaptation strategy to reduce the negative impacts of enhanced temperature on wheat yield. They 

have analyzed 180 varieties, and spent 29 years to observe the role of irrigation on crop yield. 

The result shows that irrigation significantly offsets the negative impacts of extreme heat. 
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Although 1°C increase in temperature reduces dry land wheat yield about 8% but in their sample 

irrigation completely reduces this negative impact of temperature. They also analyzed the 

interaction between heat stress and rainfall for dry land production. It can be concluded that 

rainfall does not reduce the impacts of heat stress as much as irrigation does. This is because of 

the volume, intensity and timing of water application on crops, so irrigation has a stronger 

impact on heat stress as compared to the relying on precipitation alone. The study elaborated that 

shortage of water not only reduces crop production but can also accelerate the negative impacts 

of increasing temperature. Thus, it illustrated how important water management is to ensuring 

future food security around the world (Tack et al., 2017). 

A climatic variable such as change in temperature, alternations in precipitation and extreme 

weather events endanger current and future agricultural productivity around the globe. Therefore, 

in order to combat the negative detrimental environmental effects of climate change, it is 

necessary to understand its potential bad implications. (Müller et al., 2016) carried out this study 

to estimate the impacts of changing weather patterns on winter wheat in Ukraine. This country is 

particularly appropriate as a large wheat producer in international market because of its suitable 

agricultural lands. Previous climate data and climate forecasts figure out that increasing 

temperature in Ukraine and further warming may occur specially in southern parts of Ukraine. 

They have used statistical approach to find out the relationship between historic yields and 

predict the changes in winter wheat in response of change in weather patterns by taking two 

climate scenarios. The study results display minimum effects on future crop yield, however in 

case of higher emission scenario, for example in todays developed world, the productivity 

decreases particularly in southern parts of Ukraine. While in northern Ukraine the productivity 

increased due to increase in temperature and rainfall. It must be suggested that improvements 
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should be taken into consideration to secure food security under changing climate throughout the 

world (Müller et al., 2016). 

Australia's economy depends heavily on two crops: wheat and cotton. This study was conducted 

by (Shabani & Kotey, 2016) to evaluate the impacts of climate change on wheat and cotton on 

various places. It combining the A2 emission scenario produced by the CSIRO-Mk3•0 and 

MIROC-H global climate models with CLIMEX software. The findings of this study were 

connected to determine the regions in Australia that would be best suited to grow wheat and 

cotton in the future (2030, 2050, 2070, and 2100). According to the analysis, there would be less 

land that is suitable for growing wheat and cotton from 2030 to 2050 and from 2070 to 2100. 

While large sections of the country can still be planted with cotton until 2070, but there will be a 

dramatic decline in the area planted with wheat throughout that time (Shabani & Kotey, 2016). 

Climate change is a global issue and its impact is being discussed in literature in the background 

of various domains. Pakistan is sensitive towards changing climate because of its geographical 

location. Due to worldwide anthropogenic activities the concentration of GHGs has been 

increasing which alters the atmospheric composition. Due to these gases the earth’s temperature 

has increased by trapping sunlight. The increase in temperature in tropical regions adversely 

impacted the wheat production. This elaborated study was conducted by (Janjua et al., 2014) in 

Pakistan to assess the climate change effects on wheat production. They have used 

Autoregressive Distributed Lag (ARDL) model for this purpose by taking annual data from 1960 

to 2009. The conclusion shows that climate change didn’t have the influence on crop yield in 

Pakistan but it would be having impact in future by increasing warming. However, this study 

suggested that policy makers and specialists of environment should proposed some suitable 

measures to confront any harmful effects on wheat crop in Pakistan (Janjua et al., 2014). 
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(Beck, 2013) carried out this study using ecological niche models to assess species' geographic 

ranges from occurrence data based on environmental conditions. The geographical changes will 

be important for the implementation of mitigation strategies. The ecological niche modeling 

provides a very different and unique approach which is used to relate agriculture to the 

environment. In this elaborated study ENM-based maps used for crop distribution to assess the 

land suitability under changing environment for the year 2050. The result demonstrates that 

agriculture suitability varies extensively in different localities. Some areas show better land 

suitability while on the other hand some show negative response under changing climate. They 

also relate the wealth of the nation with their agricultural change and found a positive relation. 

Some parts of Southern and Eastern Asia, Africa, and Europe were expected to be significantly 

negatively impacted, while North-Eastern Europe, can anticipate having better and favorable 

agricultural suitability (Beck, 2013). 

One of China's main grain harvests is winter wheat. In order to determine the climate 

adaptability and geographic spread of winter wheat farming in China, (Jing-Song et al. 2012) 

used the maximum entropy approach to examine this study. They have taken various climatic 

variables for the crop distribution and mapped suitable cultivation areas for the winter wheat in 

China. The Maxent analysis shows that negative accumulated temperature and annual extremely 

low temperature were the stronger predictors of the winter wheat's northern boundary. This study 

describes the northern limit of winter wheat cultivation as well as the optimum growing region 

for winter wheat in China. The outcomes of this research will be useful for policy makers to 

determine the best winter wheat growing zone and for developing a scientific understanding of 

how climate change will affect crops(Jing-Song et al., 2012). 
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Another study was conducted by (Ludwig et al., 2009) to evaluate the current climatic impact on 

wheat cropping system in Western Australia. They combined historical climatic data with the 

ASPIM-N wheat model. Two main variables that limit the crop productivity in this area were 

precipitation and dry land salinity. The results display that significant decrease in rainfall during 

1975-2004 did not reduce yield but it has significant impact on farming systems hydrology 

leading to less waterlogging and deep drainage. The outcomes will give important suggestions 

for the policy makers to investigate the future impacts of climate change in this area (Ludwig et 

al., 2009). 

Anthropogenic activities and growing agricultural practices altered the entire globe in terms of 

their land use patterns. Now, in today’s world 22% of the total land area is used for pastures and 

rangelands while only 12% is used for cultivation. In the work being presented, global databases 

for the distribution of 18 important crops around the world have been constructed using data 

acquired from satellites and from agricultural censuses. The obtained data elaborate each grid 

cell containing 18 crops and consistent with agricultural geography. They have analyzed crop 

diversity across the globe and how different crops are combined to generate significant crop 

belts. These datasets were not accurate at local scale but can be used at regional and global scale. 

This analysis can also be used to understand the farming system, food security around the globe 

and different climate models to deal with environmental consequences of cultivation (Leff et al., 

2004). 

Another study was conducted by (Easterling et al., 2000) to analyze the observational changes 

which occur because of potential climate change that will cause extreme events all around the 

world. This study has been analyzed in many parts of the world, to understand the climate 

change impacts. The conclusion of this study demonstrated that changes will occur in future 
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climate for extreme events such as increases in intense temperature and precipitation and 

decreases in extreme low temperatures. Moreover, climate change also poses its impacts on 

societal infrastructure which would be outraged by climate change. A variety of climate change 

impacts also documented in many studies at an increasing rate i.e. changes in species range 

shifts, potential distributional and phonological in many crops and extinction of many species 

due to climate change. In Addition, biological changes are also linked to extreme weather and 

climate events (Easterling et al., 2000). 

A study was conducted by (Luo et al., 2005) to assess the impacts of climate change on South 

Australian wheat yield. Using the APSIM-Wheat module and data from the Special Report on 

Emission Scenarios, they have applied better and refined climate change scenarios. They have 

taken nine climate models for the period up to 2080. Within every climate change scenario a 

yield response been constructed. Various climatic variables such as regional rainfall, regional 

temperature and concentration of CO2 under combination have also been used for this study. The 

results indicated that wheat yield has decreased to 13.5 from 32% across all locations within this 

country under climate change scenario. This study has economic and social significance and 

would be helpful for policy makers and investors to implement adaptation strategies from local 

to national level (Luo et al., 2005). 
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Chapter 3: Methodology 

 
This chapter gives a comprehensive description of the techniques and datasets used in this study 

including study area, data preparation and the use of Maxent software to obtain results. The data 

is obtained from different online sources and then this data is prepared and evaluated by using 

software (MAXENT, ARCGIS and Microsoft Excel). 

3.1 Study Area: 

 
The distribution and presence of Triticum aestivum L. is analyzed in Pakistan, which is divided 

into 37 administrative regions of the country. It lies on latitude 23° 35′ to 37° 05′ N and between 

longitude 60° 50′ to 77° 50′ E as shown in following figure. Pakistan is a South Asian country 

with diverse agro-ecology. The country is particularly susceptible to climate change because of 

its geographical location, large population size, and lack of technological resources (Ali et al., 

2017). The distribution of precipitation in Pakistan varies widely, mainly in relation to monsoon 

winds and western disturbances, but there is no precipitation throughout the year. Therefore, 

Khyber Pukhtonkhuwa and Baluchistan receive the highest rainfall from December to March, 

and Punjab and Sindh receive 50-75% of the rainfall during the rainy season. The summer 

monsoon occur from the end of June to 15 September (Salma et al., 2012). Rain fluctuations 

increased geographically, across the seasons and annually in Asia in recent decades. A declining 

trend of rainfall across Pakistan’s coastal areas and drying level rain pattern was also observed 

(IPCC, 2007). According to Pakistan's Meteorology Department, the main regions of the country 

experience a dry climate. Moisture conditions are prioritized, but over the small area in the north. 

The largest region of Balochistan and Punjab, the main part of the northern area, and the entire 

Sindh receive less than 250 mm of rainfall in a year. 
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Figure 3.1: Present localities of Triticum aestivum L. in Pakistan. 

 

3.2 Data Preparation and Acquisition: 

 

3.2.1 Occurrence Data: 

 
The specie occurrence data used in this study were obtained from Global Biodiversity 

Information Facility and literature review. Data was included that had latitude and longitude 

coordinates of wheat crop. Such species occurrence points had specific specie name, longitude, 

and latitude that determine the geographical location of specie on a map. After acquiring 

occurrence data for wheat crop, spatial rarefication was performed to reduce autocorrelation. 

This filtering step was executed by using “spatially rarefy” tool in SDMToolbox so that 

duplicates, with the same latitude and longitude coordinates, were removed in AcrGIS 10.3 

version. This eliminates duplicate points clustered within a radius, which was set to 20km, and 
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removed all those records that occurred in the ocean or great lakes, to prevent statistically over 

weighting a clustered region. The total of 13236 unique occurrences records was spatially 

filtered, yielding a final total of 6722 records. When filtering was complete, the data were used 

as an input for subsequent modeling process. Spatial rarefication can reduce sampling bias and 

spatial autocorrelation of the specie distribution, and ensure that localities were within 20km 

resolution. This involved adjusting the occurrence data itself before using it in the model. 

3.2.2 Environmental Variables: 

 
The environmental variables used in this study are current and future bioclimatic variables. The 

19 current bioclimatic variables were downloaded in raster format at a spatial resolution of 2.5 

from WorldClim (http://www.worldclim.org). WorldClim is a collection of high-resolution 

global environmental layers that can be used for mapping and spatial modeling in a GIS or with 

other software. Future climate data were acquired from CCAFS Climate Change Agriculture and 

Food Security (http://www.ccafs-climate.org). The future scenario based on two representative 

concentration pathways (RCPs), RCP 4.5 and RCP 8.5 for the year 2070. The general circulation 

models (GCMs) selected for this study were GISS-E2-R, MIROCMIROC 5, MOHC_HADGEM 

2.CC, MPI-ESM-LR and NCAR-CCSM 4 with 2.5 spatial resolution. In the research studies, 

RCPs are used to determine the future climate scenarios based on the greenhouse gas emissions 

in the near future (Moss et al., 2010). Together with the occurrence points, the potential 

distribution regions for Triticum aestivum L. in Pakistan were clipped on the study area using 

ArcGIS. The bioclimatic layers including bio8, bio9, bio18 and bio19 (mean temperature of the 

wettest quarter, mean temperature of the direst quarter, precipitation of warmest quarter, 

precipitation of coldest quarter) were removed during analysis as these bioclimatic layers provide 

http://www.worldclim.org/
http://www.ccafs-climate.org/
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the odd special anomalies and artifacts which might affect the results (Samy et al., 2016). The 

remaining 15 variables were run in Maxent model for further analysis. 

 

Sr. Bioclimatic variables Description 

1 Bio 1 Annual Mean Temperature 

2 Bio 2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

3 Bio 3 Isothermality (BIO2/BIO7) (×100) 

4 Bio 4 Temperature Seasonality (standard deviation ×100) 

5 Bio 5 Max Temperature of Warmest Month 

6 Bio 6 Min Temperature of Coldest Month 

7 Bio 7 Temperature Annual Range (BIO5-BIO6) 

8 Bio 10 Mean Temperature of Warmest Quarter 

9 Bio 11 Mean Temperature of Coldest Quarter 

10 Bio 12 Annual Precipitation 

11 Bio 13 Precipitation of Wettest Month 

12 Bio 14 Precipitation of Driest Month 

13 Bio 15 Precipitation Seasonality (Coefficient of Variation) 

14 Bio 16 Precipitation of Wettest Quarter 

15 Bio 17 Precipitation of Driest Quarter 

 

 
 

Table 1: The 15 bioclimatic variables and their description used in Maxent model 
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Occurrence data Environmental variables 

Spatial rarefication of 

occurrence data Current variables 

(2.5 resolutions) 

 

Run in Maxent model 

Raster to Ascii format 

Evaluation of model Results 

3.3 Processing of Data: 
 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

Extraction by mask 

Remove duplicates 

Correct longitude and 

latitude 
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(RCP 8.5) 

Future 
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Figure 3.2: The processing of current and future bioclimatic data. 

 

3.4 Maximum Entropy Approach: 

 
Maxent is a software application supported on the maximum entropy approach that is widely 

used to figure out the probability and suitability of species in a geographic range (Yue et al., 

2019). MaxEnt is a multipurpose machine learning technique that was applied using a standalone 

software programme (Phillips et al. 2006). 

Maxent used input data which includes specie present records and environmental variables. For 

this study and to ascertain the potential distribution of Triticum aestivum L. the software was 

downloaded from https://biodiversityinformatics.amnh.org/open_source/maxent/. The 

version used was Maxent 3.4.4. 

 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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Figure 3.3: The Maxent software version 3.4.4 

 

3.5 Running the Maxent Data: 

 
To run the maxent model it is very necessary to have a specie occurrence data and all 

environmental layers in CSV format. The specie occurrence file must have three fields: specie 

name, longitude and latitude in decimal degree. The environmental layers must be in Ascii 

format and all 15 layers were selected to gain the Maxent results. 

 

 
Figure 3.4: The processing of the Maxent (The Triticum aestivum L in CSV file and current 

bioclimatic variables are added to Maxent and were run) 
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Finally, the resulted Ascii files were converted to raster by using the ArcGIS model builder 

function and reclassified for area calculation. All categories were used to estimate of medians for 

area calculation in percentage. 
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Chapters 4: Results and Discussion: 

This chapter includes the results of current and future bioclimatic data. 

The results of ENM (Maxent) are presented below. 

4.1 Current Bioclimatic Data: 

 

4.1.1 Geographic distribution of Triticum aestivum L. under current climatic 

condition: 

The current distribution map shows the distribution area of Triticum aestivum L. The map shows 

three categories which is highly suitable area, moderately suitable area and lowest suitable area. 

The darker green color shows the highly suitable areas while lighter green to grey color shows 

the lowest suitable areas. 
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Figure 4.1: The suitable area for the current distribution of Triticum aestivum L 

 

Table 2 show the suitable area for Triticum aestivum L. under current climatic condition. Suitable 

area was classified intro three categories; highly suitable, moderate, least suitable. The results 

show that 39.31% area is highly suitable, 17.06% area is moderately suitable and 43.62% area is 

least suitable. 

 

Classification Current distribution 

 

Kilometers Square (km2) 

Current distribution 

 

Percentage (%) 

Highly suitable 389,452 km2 43.62% 

Moderately suitable 152,354.36 km2 17.06% 

Least suitable 350,997.40 km2 39.31% 

 

 
 

Table 2: The suitability analysis and current percent distribution of Triticum aestivum L 

 

4.1.2 ROC Curves: 

 
An ROC curve (Receiving operational characteristic curve) is a graph which determines the 

accuracy of a statistical model (Zou et al., 2007). AUC (Area under the curve), a probability 

curve, represents the degree of separability. It reveals how well the model can differentiate 

across classes. The better the model prediction, the higher the AUC (Bhandari, 2020). Sensitivity 

(also known as the true positive rate) and specificity (also known as the true negative rate) are 

the basic indicators of model correctness (Zou et al., 2007). If AUC is closest to 1 that means the 

better the prediction, and AUC is 0 then the poorer the predition and if AUC is higher there are 

higher chances that positive is separated from negative, if AUC is not higher then there are lower 

chances of separability of positives from the negatives (Phillips et al., 2006). 
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Figure 4.2: The average omission and predicted area for Triticum aestivum L 
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Figure 4.3: The average sensitivity vs specificity for Triticum aestivum L 
 

 

Specie Maxent AUC-ROC value for current bioclimatic data 

Triticum aestivum L 0.805 

 

 
 

Table 3: The Area under the ROC Curve (AUC-ROC) value for the current bioclimatic 

data of Triticum aestivum L 

The AUC-ROC value for the current bioclimatic data has come out to be 0.805 as shown in table 

2 which is closer to 1. Hence, the value shows that better performance of the model and highly 

suitable areas are highly separated from the lowest suitable areas for the current distribution of 

the Triticum aestivum L. 

The relationship between environmental parameters and the predicted likelihood of presence is 

displayed by a response curve. These curves demonstrate how each environmental factor 

influences the Maxent prediction; as the environmental variable changes the predicted 

probability of presence changes accordingly. While maintaining all other environmental factors 

at their average sample value, the projected probability of presence varies as each environmental 

variable is altered. In other words, the model may benefit from sets of variables changing 

simultaneously, whereas the curves reflect the marginal effect of altering just one variable. The 

curves display the mean response of the 15 replicate Maxent runs in red, and the mean +/- one 

standard deviation (blue, two shades for categorical variables). 

4.1.3 Important bioclimatic variables for assessing the distribution of Triticum aestivum L. 

The relative contributions of the environmental factors to the Maxent model are estimated in the 

table below. The relative percentage contribution of each environmental variable from the 
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jackknife analysis is determined using the Maxent model. The first and the second estimates of 

the environmental variables are obtained, in the first estimate the increase in the gain value of 

each iteration is added or subtracted from the corresponding variable only if the lambda is 

negative in its absolute value, the second estimate is obtained with random permutation. The 

most contributing variable having the highest percentage is Bio 4 (Temperature seasonality) and 

Bio 12 (Annual precipitation) having the most important information by itself as shown in the 

following table. 

 

Variable Percentage contribution Permutation importance 

Bio4 23.5 10.8 

Bio12 11.5 7.3 

Bio10 10.6 9.2 

Bio13 10.1 6.7 

Bio5 9.6 2 

Bio14 5.5 1.4 

Bio15 5.3 3.1 

Bio2 5.1 7.8 

Bio1 5.1 20.1 

Bio3 4.5 5.6 

Bio17 4.3 3.5 

Bio16 1.8 4.1 

Bio6 1.5 12.4 

Bio7 1.2 4.6 
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Bio11 0.4 1.5 

 

 

Table 4: Contribution of each environmental variable to the Maxent model 

 

4.1.4 Jackknife analysis of variable importance: 

 
The outcomes of the jackknife test of variable are depicted in the picture below. Bio6 appears to 

have the most relevant information when utilized alone because it exhibits the largest gain when 

used alone. Bio12 seems to contain the most information which is not contained in the other 

variables because it is the environmental variable that reduces the gain when it is eliminated. 

Values shown are averages over replicate runs. 

 

 
 

Figure 4.4: The jackknife analysis of training gain for Triticum aestivum L. 
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Figure 4.5: The jackknife analysis of test gain for Triticum aestivum L. 

 

4.2 Future Bioclimatic Data: 

 

4.2.1 Future Distribution Maps: 

 
The future distribution maps of Triticum aestivum L. are shown in the following figures. RCP 4.5 

and 8.5 are used of the year 2070s. The dark green color shows the highly suitable areas while 

the color ranging from light green to grey shows the moderately and least suitable areas for the 

distribution of Triticum aestivum L. 
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Figure 4.6: The future distribution of Averaged RCP 4.5 and 8.5 of Triticum aestivum L 
 

 

 

Classification Future distribution 

Averaged RCP 4.5 

(km2) 

RCP 4.5 (2070) 

(%) 

Future distribution 

Averaged RCP 8.5 

(km2) 

RCP 8.5 

 

(2070) 

 

(%) 

Highly suitable 237,830.61 km2 26.78% 174,709.69 km2 19.67% 

Moderately 

 

suitable 

171,309.42 km2 19.29% 163,625.95 km2 18.42% 

Least suitable 478,892.41km2 53.92% 549,696.80 km2 61.90% 



39  

Table 5: The suitability analysis and the future distribution for RCP 4.5 and 8.5 of 2070 

 

This table 5 gives the percentage future distribution for RCP 4.5 and RCP 8.5 of 2070. The 

highly suitable area is 26.78% and 19.67% for RCP 4.5 and RCP 8.5 respectively. The 

moderately suitable area is 19.29% for RCP 4.5 and 18.42% for RCP 8.5. The least suitable area 

is 53.92% for RCP 4.5 and 61.90% for RCP 8.5 of 2070. 

4.3 Discussion: 

 
Triticum aestivum L. is a significant and highly nutritious cereal crop around the world. It is 

cultivated almost everywhere in the world and provides a significant source of food and income 

for millions of smallholder farmers. It is the need of the hour to understand the climatically 

suitable area for its cultivation under changing climate. The study focused on the distribution of 

Triticum aestivum L. in Pakistan using current and future bioclimatic variables mainly 

temperature and precipitation. These are two prominent variables which appeared to be the most 

affected predicator variables affecting the potential distribution of Triticum aestivum L. in 

current and future scenarios. The model used in this study (Maxent) represents approximation of 

climatic suitability for Triticum aestivum L. and shifts in suitable area is estimated based on the 

correlative relationship between the predicators and the occurrence localities. 

This study aims to determine whether Pakistan's level of wheat production is being affected by 

the recently discovered threat of climatic change or not. For this purpose the study uses the 

Maxent model to examine the effects of climate change on wheat production in Pakistan. 

The result of ENM in table 3 shows that the AUC value for the raw variable analysis is 0.805 

which indicates high accuracy of the model. 
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The table 2 shows the current suitability percent distribution of Triticum aestivum L. The highly 

suitable area accounts for 43.62% of the total area occupied and the moderately suitable area 

accounts for 17.06% and the least suitable area accounts for 39.31%. The results showed that the 

highly suitable area is greater than the least suitable area. The most suitability areas are seen to 

be in Punjab and some parts of Sindh and KPK. While moderatly and least suitable areas are 

seen to be in most parts of Balochistan, Sindh and upper KPK. 

As compared to the current distribution area of Triticum aestivum L, the future averaged RCP 4.5 

and 8.5 bioclimatics show less suitability areas than current bioclimatics map. My results imply 

that climatic changes in the latter half of the 20th century significantly decreased the amount of 

climatically suitable areas for Triticum aestivum L. Under the RCP 4.5 (2070) scenario for the 

Triticum aestivum L, 53.92% of area is least suitable, 19.29% of area is moderately suitable and 

26.78% of area is highly suitable. Similarly under the RCP 8.5 (2070) scenario 61.90% of area is 

least suitable, 18.42% of area is moderately suitable and 19.67% of area is highly suitable. These 

results show that there is change in the potential suitable ranges of the species over time. A 

decrease in suitable range can be seen in RCP 4.5 and RCP 8.5. 
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Figure 4.7: The current and future distribution of Averaged RCP 4.5 and 8.5 of Triticum 

aestivum L 
 

Classification Current distribution Future distribution 

Averaged RCP 4.5 

(%) 

Future distribution 

Averaged RCP 8.5 

(%) 

Highly suitable 43.62% 26.78% 19.67% 

Moderately 

 

suitable 

17.06% 19.29% 18.42% 

Least suitable 39.31% 53.92% 61.90% 
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Table 6: The comparison of current and future distribution 

 

 
According to Table 4, the two most significant climatic factors affecting the distribution of 

Triticum aestivum L are Bio 4 (Temperature seasonality) and Bio 12 (Annual precipitation). 

These two variables (temperature and precipitation) play a major role in determining the 

potential distribution of crops. According to various scholars, future agricultural productivity 

might decrease due to an increase in temperature particularly in semi-arid and arid areas like 

Pakistan (Ahmed & Schmitz, 2011). In this scenario the temperatures are rising with decreasing 

precipitation which could ultimately have a detrimental impact on the on the volume of wheat 

crop. This is a worst scenario and it can be conceived for Pakistan if the level of precipitation 

decreases as a consequence of climatic change (Janjua et al., 2010). 
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Chapter 5: Conclusion and Recommendations: 

 
This research is focused on delineating highly suitable, moderately suitable and least suitable 

areas for wheat production in Pakistan under changing climate scenarios. To better understand 

the forthcoming distribution of wheat crop under altering climate regimes, it is essential to 

understand the circumstances that have influenced potential instabilities in the distribution of 

crops. By using Maxent model it was found that highly and moderately suitable area will 

decrease while least suitable area will increase under RCP 4.5 and 8.5. The prime production 

area is in Punjab followed by Sindh and upper KPK. While in the northern parts of Baluchistan, 

some winter wheat is also cultivated on a small scale. This study reveals that projected heating 

may lessen this suitable habitat under future climate structure. The results of this study will 

facilitate the policy makers to comprehend the likely spatial shifts of prospective wheat 

cultivation and evaluate a basis for the development of ample strategies on mitigation with 

respect to the impact of climate change. 

Recommendations: 

 

Following recommendations may be considered for managing wheat crop under changing 

climate: 

1. This research work should be used to consider future land use changes in the context of 

climate change and circulation patterns. 

2. Suitable areas should be further developed in future in order to increase production. 

 

3. Mitigatory measures should be design to ensure continued sustainable production in areas 

which are less suitable. 
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4. Stress tolerant, hybrid and genetically engineered wheat seeds along with sufficient water 

and fertilizers may be prepared to deal with adverse climatic conditions that these less 

suitable areas may face. 
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