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Estimating and Forecasting Volatility of Financial Time
Series in Pakistan with GARCH-type Models
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Abstract

In this paper we compare the performance of different GARCH
models such as GARCH, EGARCH, GJR and APARCH wmodels, to
characterize and forecast financial time series volatility in Pakistan. The
comparison is carried out by comparing symmetric and asymmetric
GARCH models with normal and fat-tailed distributions for the
innovations, over short and long forecast horizons. The forecasts are
evaluated according to a set of statistical loss functions. Daily data on the
Karachi Stock Exchange (KSE) 100 index are analyzed. The empirical
results demonstrate that the use of asymmetry in the GARCH models and
the assumption of fat-tail distributions for the innovations improve the
volatility forecasts. Overall, EGARCH fits the best while the GJR model,
with both normal and non-normal innovations, seems to provide superior
Jforecasting ability over short and long horizons.

Keywords: APARCH; EGARCH; Fat-tailed distribution; Forecast; Forecast
horizon; GARCH; GJR; KSE 100; Volatility.

Introduction

Financial markets play a crucial role in any country’s economy.
Monetary policies are generally based on stock exchange indices, foreign
exchange rates, price indices, inflation rates, interest rates, etc. Further it
is generally assumed that the ultimate goal for monetary policy is price
stability. Empirical studies have concluded that a large change in prices
today tends to be followed by a larger change in the financial sector for
which a time series study needs to be conducted. One has to carry a time
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series study of all such financial changes. Some well-known characteristics
are common to many financial time series. Even a cursory look at data
suggests that some time periods are riskier than others resulting in a
variation in the expected values of the error terms. Moreover, these risky
times are not scattered randomly across quarterly or annual data. Instead,
there is a degree of autocorrelation in the riskiness of financial returns.
Volatility clustering is often observed. Financial time series often exhibit
leptokurtosis, meaning that the distribution of their returns is fat-tailed.
Moreover, the so-called leverage effect refers to the fact that changes in
stock prices tend to be negatively correlated with changes in volatility.
The econometric challenge is to specify how the information is used to
estimate and forecast the mean and variance of the return, conditional on
the past information. Currently the most powerful known techniques used
to estimate and predict the volatility on high frequency data belong to a
family of generalized conditional autoregressive heteroskedastic (GARCH)
models. The goal of such models is to provide a volatility measure like a
standard deviation that can be used in financial decisions concerning risk
analysis, portfolio selection and derivative pricing.

Primarily, time varying heteroskedasticity is modeled by Engle
(1982). He proposed the autoregressive conditional heteroskedastic (ARCH)
process that allows the conditional variance to change over time as a
function of past errors leaving the unconditional variance constant.
Bollerslev (1986) extended his work and introduced the generalized
autoregressive conditional heteroskedastic (GARCH) process. These models
have been proved useful for modeling a variety of time series phenomena.
However, both the models only control for the conditional
heteroskedasticity, but they do not capture the so-called leverage effect.
This led to the extension of nonlinear GARCH models e.g., the exponential
GARCH (EGARCH) by Nelson (1991), GJR by Glosten, Jagannathan and
Runkle (1993), the asymmetric power ARCH (APARCH) by Ding, Granger
and Engle (1993), the Threshold GARCH of Zakoian (1994), the Quadratic
GARCH (QARCH) by Santana (1995), etc. Although asymmetric models
successfully capture the leverage effect, under the assumption of normal
distribution of the innovation, they fail to capture the thick tail properties
of financial time series. This has naturally led to the use of non-normal
distributions, such as student-z, generalized error, normal Poisson, normal-
lognormal, Bernoulli-normal, and skewed student-z distributions (see Peters,
2001 and the references therein).

The forecasting performance of GARCH models has been assessed
many times e.g., Pagan and Schwert (1990), Brailsford and Faff (1996) and
Loudon, Watt and Yadav (2000). On the other hand, comparing normal
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densities with non-normal ones, has also been studied in several times e.g.,
see Hsieh (1989), Baillie and Bollerslev (1989), Peters (2001) and Lambert
and Laurent (2001).

The main goal of present study is to evaluate the performance of
different GARCH models in terms of their ability to characterize and predict
out-of-sample volatility of financial time series in Pakistan. For this purpose,
we compare the forecasting ability of GARCH, EGARCH, GJR and APARCH
models with normal, student-z and generalized error distribution (GED)
innovations. The forecasting performance of such models is assessed through
statistical loss functions. The estimates and forecasts are made on the KSE
100 index, because Pakistan's KSE 100 index is the best-performing stock
market index in the world.

The plan of the paper is as follows: Section 2 discusses the models
used in the study. Section 3 briefly describes the densities. In Section 4 we
discuss forecast evaluation methods in terms of the statistical loss function
to assess the forecast ability. All the empirical results and discussions are
presented in Section 5 and some concluding remarks are made in Section 6.

2. Volatility Models

2.1. The GARCH Process

..., T and
r, =In(y, | y,_1) x 100 denote the rate of return from time # to #1. Let¢,

Let Yy, denote the price index at time ¢ =1, 2,

be a real valued discrete - process and ‘¥, the information set (o -field) of

all information through time z The ARMA(k, )-GARCH (p, ¢) process is
then defined as in (1)-(2)
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where p20, ¢>0, y,0>0, y;,20 for all i=1 2, .., qand oy >0
for 7=0,1,.., p. If p =0 the GARCH (p, ¢ process reduces to the
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ARCH (g) process and the conditional variance is simply a linear function of
the past squared innovations only. If p = ¢ = 0 then the GARCH process is
simply white noise with constant unconditional variance. The GARCH
process defined in (1) is stationary

»
ift Y+ 2 w,<1
i=1 j=1

Under the GARCH (p, ¢) process, the one-step-ahead volatility
forecast may be given as

A2 R S L. .2
Crevr =Vo+ 2Vi€re1-i + 200741
i=1 Jj=1

2.2. EGARCH Model

The exponential GARCH or EGARCH model involves the first
introduction of an asymmetric effect on negative and positive shocks in an
econometric model of volatility, by Nelson (1991). The specification for such
a model is given as

2 A L 2
Ino, =y, + Z(7z'|77t—i _E(Uz—i)|+ﬂi77z—i) + Za)jo-t—j )
i=1 j=1

g
tr . . . .
where 77, = — is the standardized normal residual series.
t

The formulation in logarithm shares the usual positivity constraints
on the parameters and also implies that the leverage effect is exponential
rather than quadratic. The asymmetric effect is introduced by the non-linear

function y,|7,_;, — £(,_,)| + B;(7,_;) which is the function of both the
magnitude and the sign of 77,. This specification has another advantage as

compared to other asymmetric GARCH models; that is, it does not require
any stationary constraints.

One step-ahead conditional variance forecast may be given as
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2.3. GJR Model

Gloston, Jagannathan and Runkle (1993) also consider the impact of
good and bad news by introducing indicator function in the symmetric
GARCH model

q J4 )
+27/z tz+ﬂ t z)+za)jo-t—j ’
i=1 Jj=1

where 4, is the dummy variable and takes the value 0 when &, is positive

2
and 1 when &, is negative. In other words the impact of & on the

conditional variance is different when &, is positive or negative.
The one-step-ahead volatility forecast for the GJR model may be given as
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2.4. APARCH Model

The GARCH (p, ¢) model has been extended in various ways. Among
the most interesting developments are the asymmetric power GARCH and
APARCH (p, ¢) model (Ding, Granger and Engle, 1993), which allows to
take account of both asymmetry and (possible) long memory property. The
APARCH model can be expressed as

s q s
o =y + vl - Bm)” + Zw Oy
i=1 j=1
where p20, ¢>0, 7,>0, 7,20, -1<f;<lforall i=1 2, .. ¢,
CUJZO foral j=1,2..,p 6>0.

The covariance stationary condition for the model is

q 5 J2
> vilm| - B + Yo, <l.
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Ding, Granger and Engle (1993) found that the closer o is to 1, the larger
is the memory of the process. Equivalently, this model couples the flexibility
of a varying exponent with an asymmetry coefficient. Moreover, the
APARCH model includes seven other ARCH extensions as special cases (see,
Peter, 2001, for more details).

One step-ahead volatility forecast may be given as

) . . - s L. .5
Gy = Vo + LVilerai = Bigra)” + Za)jO-T+1_j .
i=1 j=1

3. Densities

A normal density for innovation was assumed in the ARCH process
introduced by Engle (1982) and Bollerslev (1986) who extended the ARCH
process into GARCH. Although the normal distribution is widespread, it
cannot effectively describe the thick tails of stock returns, due to excess
kurtosis. Bollerslev and Wooldridge (1992) proposed quasi-maximum
likelihood (QML) procedure which is robust to departures from normality.
Although the QML estimator is consistent, it is inefficient for non-normality
distributed data as the degree of inefficiency increases with the degree of
departure from normality (Engle and Gonzalez-Rivera, 1991). This leads to
the use of other distribution functions, such as the student-z by Bollerslev
(1987) and generalized error distribution (GED) by Nelson (1991) to model
tail thickness by a parameter, called degree of freedom.

3.1. Standardized Student-t Distribution
Bollerslev (1987) proposed the standardized student-z distribution

with v>2 degrees of freedom,

2 YTl
Fin,) = INw+11/2) 14+ n, 2
Tw/ 2z —=2) v=2

where I'(.) is the gamma function. The degree of freedom represents the

parameter to be estimated. The #distribution is symmetric around zero and

for >4 the conditional kurtosis equals 3(1)—2)(1)—4)_1, which exceeds

the normal value of 3, but forv — 00 the density of standardized student-z
distribution converges to the density function of the standardized normal
distribution.
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3.2. Generalized Error Distribution

Nelson (1991) suggested the use of the generalized error distribution
(GED)

_vexpl=0.5)p, 12|
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Whenv =2, 17, is standard normally distributed. Forv <2, the

where U is the tail-thickness parameter and A = |2

distribution of 7, has thicker tails than the normal distribution (e.g., for
v=1 71, has double exponential distribution) while for © >2 the
distribution of 7, has thinner tails than the normal distribution (e.g., for
U=, 7, has a uniform distribution on the interval (— V3, f3) (see
Nelson, 1991).  The  conditional  kurtosis is  given by

(CA/0)TG /o) (T o)

Notice that the choice of a density has a particular impact on some
models, for example in EGARCH the value of E |77t| depends on the density

function for the standard normal distribution

E(U[—z) R
T

for student-z distribution
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4. Forecast Evaluation Methods

The comparison of forecasting performance of GARCH models

2
requires the actual volatility denoted by o, . As such, it provides the natural

benchmark for forecast evaluation purposes. A common model-free indicator
of volatility is the daily squared return. However, one can obtain a more
accurate measure by following an idea proposed by Merton (1980) and
Schwert (1989) and formalized by Andersen and Bollerslev (1998). They
argued that the single squared change is a noisy indicator for the latent
volatility in the period, because the idiosyncratic component of a single
change is large. The noise is reduced by taking the sum of all squared intra-
period changes, and the smaller the sub-period, the larger the noise
reduction. Since the highest frequency available to us is daily data, this idea

2
results in the use of the daily squared return o, = rtz as actual volatility.

We have summed the daily realized volatility over the A-days to
k
2 2
obtain the volatility at /k-step-ahead (for %2 >1) ie.op, ., = X 07, ;e
j=1
A2
Similarly, k-step-ahead volatility forecast &, ., is the aggregated sum of
L2 ko2
the forecasts made at time 7i.e. G, 4, = ZIGT T
]:

The evaluation of forecast ability of competing volatility models is
not an easy task, as pointed by Bollerslev, Engle and Nelson (1994), and
Lopez (2001), and there does not exist an exceptional measure of selecting
the best model. Hansen, Lunde and Nason (2003b) applied the Model
Confidence Set (MCS) procedure of Hansen, Lunde and Nason (2003a) to a
set of volatility models in order to pick the ‘best’ forecasting model,
amongst case volatility models. As in this approach, the performance of a
forecast may be evaluated by using an out-of-sample evaluation under a loss
function specified by the user. But like many researchers (e.g., Peter, 2001
and Marcucci, 2005), this paper simply uses different statistical loss
functions, available in literature for volatility forecast evaluation. These loss
functions will be used as diagnostic tools on the forecasting model.

To assess the forecast ability of different models, the paper also uses
some statistical loss functions that have different interpretations. These are
given as:
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In the above cases 4 is the forecast horizon.

The first two measures are the mean square error (MSE). These
forecast error statistics depend on the scale of the dependent variable. The
criteria (3), (4) and (5) are the mean absolute error (MAE) and mean
absolute percentage errors (MAPE), respectively. The MSE’s are more
sensitive to outliers than MAE’s. The measure in (6) is the Theil inequality
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coefficient (TIC) which is scale invariant. It always lies between zero and
one, where zero indicates a perfect fit. The loss function in (7) is
computed in Mincer-Zarnowitz regressions (Mincer-Zarnowitz 1969), by

. . 2
regressing the actual variance o ,on the constant and forecasted

. A2
variance G, |7 »
2 . b,\2
GT+/€ =a-+ O-T+k|T +vT+k'

The statistic R® from this regression provides the proportion of
variance explained by the forecast i.e. the higher the R%, better the
forecasts. The R? LOG, named by Pagan and Schwert (1990) as the
logarithmic loss function, penalizes volatility forecasts asymmetrically in low
and high volatility periods. The loss function in (9) is the k-adjusted MSE
(HMSE), proposed by Bollerslev and Ghysels (1996).

5. Empirical Results and Discussions
5.1. Data and Methodology

In this section, we describe the data and our methodology. The
whole sample consists of the KSE 100 index of Pakistan closing prices from
January 1, 2002 to August 31, 20006, for a total of 1218 observations. The
estimation process is run using four years of data (2002-2005) while the
remaining eight months (January 1, 2006 to August 31, 20006) data are used
for the evaluation of the out of sample forecast performance. The indices
prices are transformed into their rates of returns.

First of all, the statistical properties of returns are assessed through
means of coefficients of skewness and kurtosis, Jarque-Bera test of normality,
ARCH LM test and Ljung-Box test on the squared residuals to check the
presence of typical stylized facts.

Table-5.1: Descriptive Statistics of I,

Mean St .Dev Min. Max. Skewness Kurtosis Jarque- LM(10)  QX10)
Bera test

0.1671 1.5887 -7.7408 11.6000 -0.1958 6.9837 811.8576 225.1666 536.2900

Table-5.1, represents the descriptive statistics of #,. The Jarque-Bera
statistic is high due to excess kurtosis and negative skewness, indicating the
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non-normality of the distribution. Moreover, LM (10) statistics is the ARCH-
LM test proposed by Engle (1982), Q(10) is the Ljung-Box test statistics on
the squared residuals up to lag of 10. Under the null of no serial
correlation, the high values for both the statistics indicate the presence of
ARCH effect in the conditional variance.

For the identification of the mean model, we have followed the Box-
Jenkins methodology. A number of tentative models with increasing ARMA
orders and increasing GARCH orders have been estimated. Appropriate
models are identified wusing autocorrelation function (ACF), partial
autocorrelation function (PACF) and Ljung-Box statistics of the standardized
residuals and the squared standardized residuals and ARCH-LM test.
Through this exercise, a GARCH (1, 1) process is found to be the best
model for conditional variance. The final model amongst the models,
satisfying the diagnostics is selected on the basis of Akiake information
criterion (AIC) and Schwarz's Bayesian information criterion (BIC) given in
the Appendix. The selected model is given as

" =@ +Pot,_g t&,.

Table-1, presents the estimation results for the parameters for the
mean model, GARCH, GJR, EGARCH and APARCH models with three
distributions: normal, student-z and GED. Asymptotic k-consistent standard
errors are given in parentheses. To estimate and forecast volatility, we use
the popular software, EViews 5.0
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Regarding the conditional mean, ¢?0 is highly significant for all the

models. However, @, is non-significant, although we do not drop this

parameter because by doing so, the ACF of the standardized residuals
becomes significant at lag 9. Moreover, as our main focus is on the forecasts
of volatility and by dropping this parameter, the forecast’s accuracy reduces.
The conditional variance estimates show that all the parameters are highly
significant except asymmetric parameters in the cases of student-z and GED
distributions. In addition, for the student-z distribution, the values of shape
parameterv for GARCH, EGARCH, GJR and APARCH clearly indicate the
typical fat-tail behavior of financial returns. Moreover, for the GED, the
estimates clearly suggest that the conditional distribution has fatter tails
than the normal distribution, since the shape parameters for GARCH,
EGARCH, GJR and APARCH have values that significantly between 1 and 2
indicating the conditional distribution of KSE 100 index is indeed fat-tailed.
Ljung Box statistics at lag 12, Q(12) and Q°(12) on the standardized
residuals and the squared standardized residuals respectively, are non-
significant indicating that all these models adequately described the
dynamics of the series.
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Table-2 shows the model comparison in terms of measures of
goodness of fit. The results demonstrate that the performance of asymmetric
GARCH models with all the three distributions justified the use of
asymmetric GARCH models to estimate the series as highlighted by the
values of the log-likelihood. According to AIC, EGARCH perform the best in
all the three cases. According to the statistical loss functions considered in
this study, the EGARCH model with normal and non-normal innovations fits
the best, since the sum of the ranks is the smallest. The second best model
is the APARCH. However, the performance of GARCH model with all the
three distributions is poorest, as the sum of the ranks of all the measures is
highest in each case.



G.R. Pasha, Tabira Qasim and Mubammad Aslam

130

1 0T T 6I6L'¢ T LYSTS T TEC9L91- ¢ 6091°¢ 1 9T LET I ¢€180 T o60b€0 T ¢bec'T T €8T 1 8I¢TTe T ¢oCl'l ago
¢ T I T18C¢ T octvCTe¢ 1 1TOL9T- T L[9¢0°¢ ¢ 106¢°T ¢ 91¢80 T 8€SO ¢ 0¥OP'T ¢ 09T¢'CT ¢ TLeTee ¢ 9I8I'L 7-uapmg
4 144 ¢ 6L9¢C ¢ SPege ¢ 98ILI- 1T 8TeLv T 0¢8¢'L ¢ LSI80 ¢ 0¢€¢0 T svIge 1T ¢Lv'c T 1begee 1 <hIT'L JewJoN
quey
Jjuey wnS juey OId Yuw] ON uey Admoq Hqued dSINH Yued O0Tcd jued CAVIN Yued DOILIL Yuwey ddVIN Jued TAVIN ued CASIN qued TASIN
HDUVAV
1 0C ¢ 98C°¢ T 6TSTE T S£¢€9L91- ¢ 9orI0°S 1 eLe’l I 8CI80 T 9L6¢0 T v00¢'C T 1o60V'C 1T ¢e€L1¢ T SIOL'T adao
¢ 174 T ¢¢Lze 1 1TvT¢e T LLOL9T- T LeT6'V ¢ 12661 ¢ 10680 T 8L¢SO0 ¢ v69¢'T ¢ S8PT ¢ v8COTE ¢ 98VI'T 7-3uspmg
4 [44 ¢ 968¢¢ ¢ 60¢Ce ¢ 9LLILI- T 9109V € 0¢8¢'L ¢ C¢I80 ¢ L69€O0 1 T98CT'CT I 8boc'CT T ¢1T8l¢ I Or60'L JewJoN
quey
juey wng yuey DJId Yuey DN Yuey A‘:woq juey dSINH Ul OO0Td Yuey TAVIN Yuey OIL Yuey ddvVIN Jued TAVIN ued TASIN Yuey [dSIW
HOYVOd
1 0C ¢ voor'e T LST¢Y T LVBL9T- ¢ T8¢0'S 1 whLe'l I <180 T TIPSO T 0vse'C T 104°C 1T 69¢6C¢ T ¢covl'l adao
¢ 174 T 98LT°¢ T TWTE 1 LETLIT- T 8¢l8PV ¢ 656¢°'T ¢ ¢6¢80 T 09TS0 ¢ o6LYT ¢ €£T9ST ¢ 0¢IOvVE ¢ 9¢0T'T Z-)uspms
4 [44 ¢ 06L9¢C ¢ C6eCe ¢ 90TTLI- T 1€99Fv T or 8¢l ¢ L6180 ¢ ¢CI€€0 T veeg't 1T 00sv'T T ¢IsTéee 1T TI€¢I'l JewJON
quey
Juey wng uey JId Juel DN uey Adwoq quey HSINH YUl OO0TCd YUty THVIN Yued  DOLL  Yuey ddVIN Jue] THVIN Yuey CHSIN YUuey [HSI
o
1 0T ¢ ¢S8C¢ T 99T ¢ T O6T6L9T- ¢ T1610°S 1 9L¢T T €C80 T 01€€0 T veLe't T 088'C 1 TToLee T 60911 ado
¢ T T 9¢/C¢ 1 ovvTe 1 ¢TCL9l- T T608bV ¢ CL6E'T ¢ 90F80 T 09¢€0 ¢ o6br'CT ¢ ¢eLST ¢ LeIOSE ¢ LPITT 7-uapmg
4 [44 ¢ 8T9¢¢ ¢ 68¢¢¢C ¢ L8TTLI- T T99°F T 0L8¢'T ¢ 9tZ80 ¢ £8¢¢0 T TeseT 1 089'T T TTLOVE T SLVI'T JewJON
quey

Jquey wng uey OIg  JUR OV ey (0T Jyuey dSWH YURL OO YU ZAVN YUBM  OLL Wl HdVIN JUuRl TAVIN Ued ZASN U TASW o1 m QL IS

HOYVvVO

@osuredwo)) uonngrNsi(y) 1Y-JO-ssAUPOOL) JO sansedpy djdwes-uj : ¢-o[qe],



Estimating and Forecasting Volatility of Financial Time Series in Pakistan 131

Table-3 shows the distribution comparison in terms of measures that
calculate goodness of fit. The results show that the overall comparison is
difficult. According to the log-likelihood, AIC and BIC, the competing
models fit the best with fat-tailed distributions and prominent student-z,
while the symmetric and asymmetric GARCH models with normal
distribution perform the poorest. According to other measures, all the
competing models with student-z innovations perform the poorest. Overall,
on the basis of all the measures, all the competing models fit best on the
series with GED innovations.
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Table-4 shows the overall in-sample measures of goodness of fit. The
overall comparison shows that the largest log-likelihood is given by the
APARCH model with student-z innovations, while AIC indicates that the best
model is EGARCH with student-z innovations. Overall, the sum of the ranks
of all statistical loss functions show that the EGARCH models with GED and
normal innovations respectively fit the best followed by the EGARCH and
APARCH models while the performance of the GARCH model is the poorest.

5.2, Forecast Evaluation

The main goal of our study is to compare the forecasting ability of
different GARCH models. Such a comparison has been carried out by
comparing the volatility forecasts at one-, five- ten-, fifteen- and twenty-
steps-ahead. Forecasting ability of competing GARCH models is reported by
ranking according to the statistical loss functions given in section 4 through
Table-5 to Table-11. We have compared the results in terms of model
comparisons and distribution comparisons at all the one-, five- ten-, fifteen-
and twenty-steps-ahead forecast horizons. But the scope of the present paper
has been limited to the case of ten-steps, as the rest of the cases follow a
similar pattern. However, the total comparison is given for all the forecast
horizons. Finally the best performing model is selected by ranking the sum
of the ranks of the individual loss functions.
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5.3.1. One-step-ahead Forecast Evaluation

Table-5 shows the forecast evaluation at one step ahead. The model
comparison recommends that asymmetric GARCH models perform the best
for all the three distributions made obvious by final ranks. For all the three
distributions, the pattern of the ranks of the final ranks (the ranks of the
sum of the individual loss functions) is (4, 1, 2, 3), for GARCH, GJR,
EGARCH and APARCH respectively. This indicates that the first best model
is the GJR and the second best model is EGARCH. APARCH provide less
satisfactory results while symmetric GARCH, clearly, gives the poorest
forecasts.

The comparison between densities is harder because results vary
across models. The symmetric GARCH and APARCH show the pattern of the
ranks of the final ranks as (1, 3, 2), for normal, student-r and GED
respectively, indicating the best results are obtained with normal
innovations. While GJR and EGARCH gives the final ranks as (2, 3, 1) for
normal, student-# and GED respectively revealing the best results with GED
innovations. At one-step-ahead, the forecasting ability of all the competing
models with student-z innovation is the poorest.

The overall comparison of the forecasting performance of the
competing models shows that GJR model with GED innovations seems to
perform the best.
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5.3.2. Five- step-ahead Forecast Evaluation

Table-6 shows the forecast comparison at five-steps-ahead. The
model comparison gives a pattern similar to the final ranks at one-step-
ahead forecast horizon. So, the use of asymmetric GARCH model versus the
symmetric GARCH is strongly recommended. For all three distributions the
first best model is again the GJR and the second best model is EGARCH.
APARCH provides less satisfactory results while symmetric GARCH clearly
gives the poorest forecasts.

The comparison between densities led to the use of non-normal
densities since all the competing models give better forecasts with fat-tail
distributions. The symmetric GARCH and EGARCH show the pattern of the
ranks of the final ranks as (3, 1, 2), for normal, student-r and GED
respectively, indicating the best results lie with student-z innovations.
Moreover, GJR and APARCH give the final ranks as (2, 3, 1) for normal,
student-z and GED respectively revealing the best results with GED
innovations. At five-steps-ahead the forecasting ability of all the competing
models with normal innovation is poorest.

Overall results illustrate that the GJR model with GED is again the
most successful model to forecast the volatility of KSE 100 at five steps-
ahead.
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5.3.3. Ten - step-ahead Forecast Evaluation

The model comparison at the ten-step-ahead forecast horizon is
given by Table-7. The model that reveals the best forecasting ability lies
again with GJR for all the three distributions as highlighted by all the loss
functions given in Table-7. The comparison between the other models is
complicated because the results are conflicting. For the normal and GED,
the second best model is APARCH while it performs the poorest with
student-z. On the other hand the performance of EGARCH is better with
student-# versus normal and GED.

Table-8 shows the distribution comparison. The results favor the use
of non-normal densities, since all the symmetric and asymmetric GARCH
models provide better forecasting performance with non-normal innovations.
However, within non-normal distributions GARCH and EGARCH better
perform with student-z distribution while GJR and APARCH better perform
with GED innovations.

Yet again, overall the preeminent model is GJR with GED
innovations as obvious by Table-9. All statistical loss functions except HMSE
and R’ strongly support the use of GJR with GED innovations to forecast
the volatility of KSE 100 at the ten-step-ahead forecast horizon. The second
best model is also GJR with student-¢ innovations.
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5.3.4. Fifteen- step-ahead Forecast Evaluation

The model comparison at fifteen-step-ahead volatility forecast also
shows that GJR provides the best forecasting ability for all the three
distributions.

The forecasting ability of all the symmetric GARCH and asymmetric
GARCH models is better with non- normal densities than with normal
densities.

The overall performance of GJR is the best in the model comparison
and in the densities comparison.

5.3.5. Twenty- step-ahead Forecast Evaluation

At twenty-step-ahead forecasting, the competing models reveal the
same forecasting performance with normal and non-normal densities as at
the fifteen-step-ahead forecast horizon. So, similar conclusions may be
drawn as at fifteen-step-ahead forecast horizon.

It is conspicuous that the &’ is higher when using non-normal
distributions and is highest when using a student-z distribution at all the
forecast horizons. Its value also increases from shorter to longer forecast
horizons e.g., the highest value at one-day forecast horizon is 30.50% and is
94.50% at twenty-days forecast horizon. But it does not mean the forecast is
inadequate at shorter forecast horizons, as explained by Anderson and
Bollerslev (1998) and Kiaassen (2002). The primary reason for the low &’ at
shorter forecast horizons is the noise in the observed volatility measure. As
discussed in Section 4, this noise can be reduced by taking the sum of
squared changes over sub-periods. To give an indication of the magnitude of
the effect of this noise reduction on R*, Anderson and Bollerslev compute
the R* for a GARCH(1,1) model on daily mark/dollar and yen/dollar
exchange rates using a single squared daily changes and using the sum of
288 squared five-minute changes in a day. The R’ increases and they
conclude that GARCH does provide good volatility forecasts despite the low
R that is typically obtained using the single squared change. For the
purpose of this paper, the argument also explains why the & is higher for
the longer horizons than for the shorter horizons; in the return series the
noise has been reduced in the twenty-day realized volatility by using twenty
instead of one squared returns. Further the R’ is also the highest for the
GJR model with student-¢ innovations, at all the one-day, five-day, ten-day,
fifteen-day and twenty-day forecast horizons.
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These results generally recommend that volatility forecasts of the
KSE 100 index may be improved by using asymmetric GARCH models with
non-normal distributions at both short and long forecast horizons. It is also
apparent that the GJR model with GED innovations outperforms the other
models, at all the forecast horizons.

6. Conclusion

The essential goal of this paper was to compare the performance of
several GARCH-type models (GARCH, EGARCH, GJR and APARCH) in
estimating and forecasting the volatility of the KSE 100 index. Such a
comparison is carried out by comparing one-day, five- day, ten-day, fifteen-
day and twenty-day-ahead volatility forecasts. In addition, all the models are
estimated assuming both normal and fat-tailed distributions such as student-
t and GED for the innovations. The comparison was focused on different
aspects: the difference between symmetric and asymmetric GARCH (i.e.
GARCH versus EGARCH, GJR and APARCH), and the difference between
normal and fat-tailed distributions.

Our results show that traceable improvements can be made when an
asymmetric GARCH model is used in estimating volatility of the KSE 100
return series. Generally, according to the statistical loss functions, among
the competing models, EGARCH and APARCH fit the series better than GJR
models. Also, the symmetric GARCH model provides the poorest results to
fit the series. All the models with GED innovations fit the series the best.
Overall, on the basis of rank of the sum of the ranks of individual loss
functions, EGARCH with GED fits the best.

Overall, the empirical results show that GJR with all the three
distributions seems to provide superior forecasting performance at all one-
day, five day ten-day, fifteen-day and twenty-day-ahead volatility forecasts
horizons according to the statistical loss functions. So, it may be concluded
that the asymmetric effect is central to estimating the quadratic effect for
forecasting. The symmetric GARCH model performs poorly according to the
statistical loss functions, especially at shorter forecast horizons. Moreover,
non-normal distributions, generally, provide better out-of-sample results
than the normal distribution.

Further, according to the different statistical loss functions that
evaluate out-of-sample forecasts, the GJR model with GED innovations
seems to provide superior forecast ability at both shorter and longer forecast
horizons. So, it may be concluded that it is the best way to forecast
volatility of KSE 100 index is at shorter and longer forecast horizons.
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Appendix
Table-A: Model Selection
Models LogL AIC BIC
ARMA(9, 0)-GARCH(1, 1) -1722.870 3.3388 3.3627
ARMA(2, 2)-GARCH(1, 1) -1731.888 3.3395 3.3775
ARMA(3, 0)-GARCH(1, 1) -1749.293 3.3756 3.4041
ARMA(3, 0)-GARCH(2, 2) -1745.653 3.3724 3.4105
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