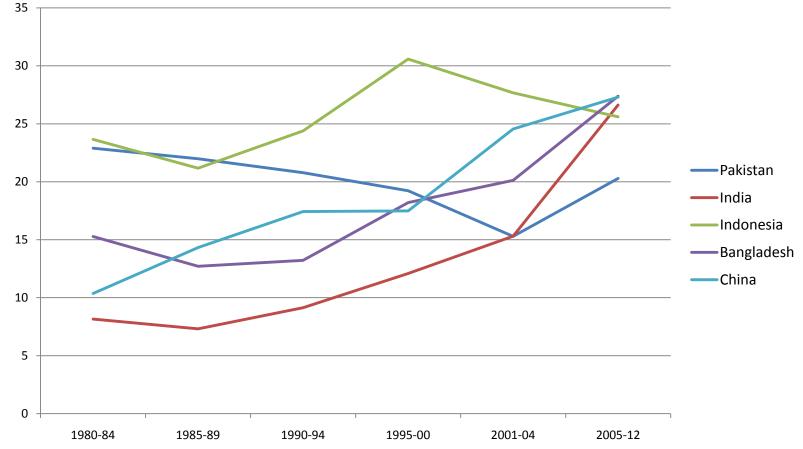
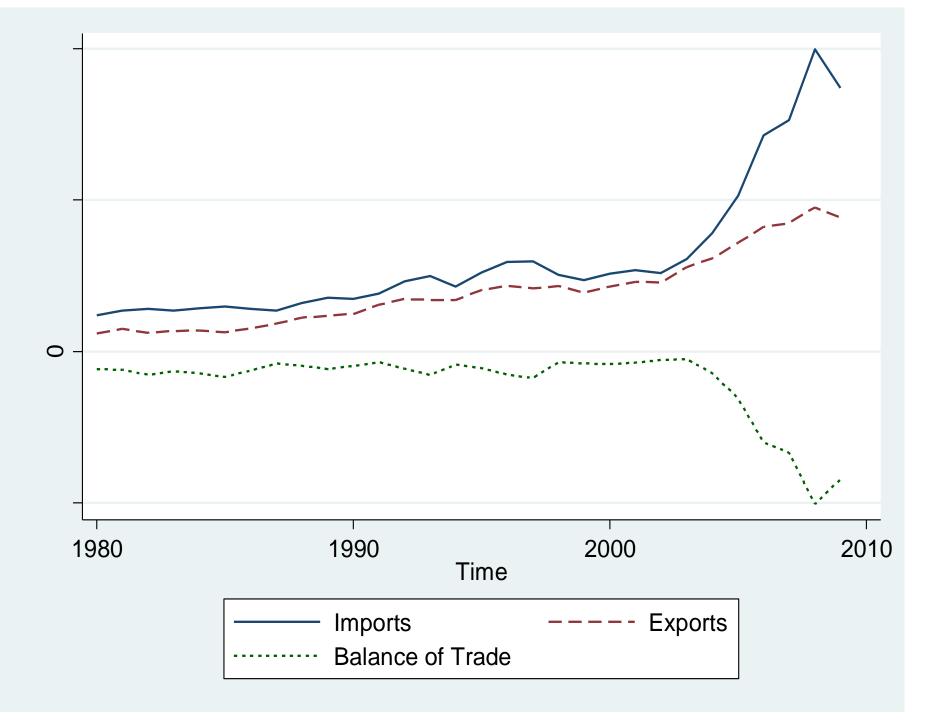
Estimation of import demand function for Pakistan


By Zunia Saif Tirmazee Resham Naveed


Research Question

- Identify factors that explain the variations in import demand of Pakistan.
- Towards that end:
 - Two regression equations were estimated using VECM
 - Conventional import demand function
 - Additional determinants i.e., TOT and Foreign Exchange reserves availability
 - Analysis of residuals
 - Two subperiods post 1980's
 - 1980-2000
 - 2000-2012

Further Analysis of Import trend of Pakistan

 Falling imports to GDP ratio for Pakistan from 1980 to 2000

Composition of imports of Pakistan

	Share of Total Manufacturing imports (%)					
Commodities	2002-04	2005-06	2007-09	2010-12		
Capital Goods	31	36	32	24		
Consumer						
Goods	10	10	12	15		
Industrial Raw						
Materials						
Capital						
Goods	6	7	8	7		
Consumer						
Goods	52	46	51	55		

Base Model

In line with the literature, the first model we estimated is conventional import demand function.

$$\mathsf{M}=f(\mathsf{RP},\mathsf{Y})$$

That is imports (M) are a function of the relative prices(RP) measured as the ratio of import price index to domestic price index and real income (Y) is measured by real gross domestic product.

Model 2

- Once the base model is estimated the second model is specified as follows
 M = f (Y, RP, TOT, FXR/Y)
- Where TOT is terms of trade defined as unit value of exports divided by unit value of imports.
- FXR/Y is the ratio of foreign exchange reserves to output.

The Results: Model 1

	Equation (1)			
	Elasticities			
Coefficients	Short Run	Long Run		
ΔLnM _{t-1}	0.286	-		
	(0.206)	-		
ΔLnY _t	1.146**	0.621***		
	(0.669)	(0.193)		
ΔLnRP _t	-0.157**	-0.246		
	(0.072)	(1.414)		

The Results: Model 2

	Equation (2)			
	Elasticities			
Coefficients	Short Run	Long Run		
ΔLnM _{t-1}	-0.124	-		
	(0.181)	-		
ΔLnY _t	0.498	2.400***		
	(0.544)	(0.813)		
ΔLnRP _t	-0.055	-0.679**		
	(0.121)	(0.361)		
ΔLnTOT _t	0.630**	0.411**		
	(0.290)	(1.063)		
$\Delta Ln(FXR/Y)_t$	0.159**	1.186***		
	(0.070)	(0.319)		
Constant	0.060	-		
	(0.030)	-		
Error Correction Term	-0.1436***			
	(0.0425)			

Analysis of Residuals of the two Models

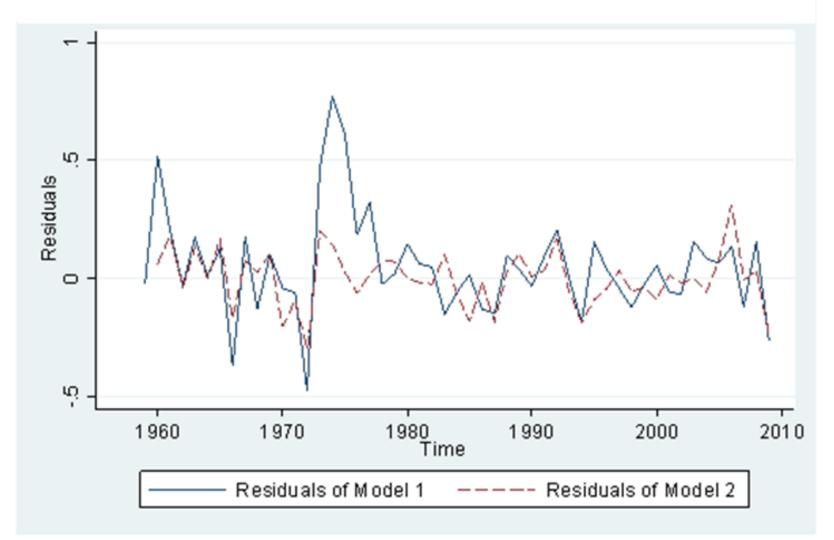
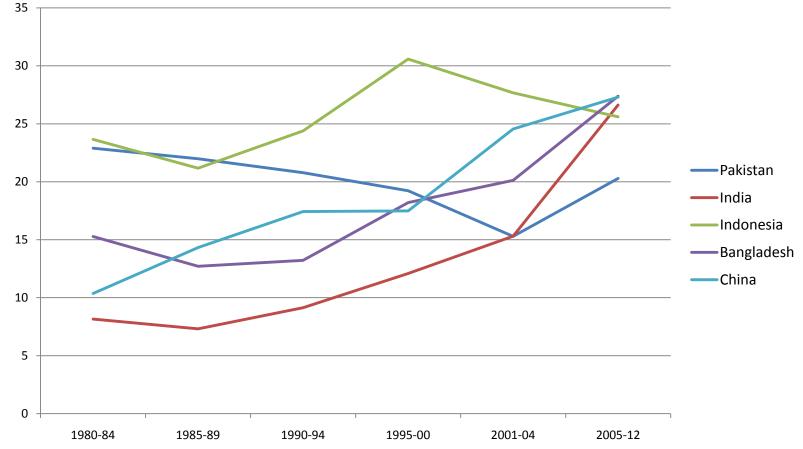



Fig 2: Line Plots of Residuals of Equation (1) and Equation(2)

Further Analysis of Import trend of Pakistan

 Falling imports to GDP ratio for Pakistan from 1980 to 2000

Significance of this pattern

- Unusual for a developing country
- Imports and GDP feed on each other
- Falling imports to GDP ratio implies
 - Pakistan is import constrained
 - Fall in net capital inflows
 - Inadequate foreign exchange reserves to finance imports

Analysis of Two Sub Periods

Coefficients	1980-2012	1980-2000	2000-2012
	(1)	(2)	(3)
ΔLnYt	-0.18***	-0.166***	0.612**
	0.043	0.043	0.058
ΔLnRPt	0.045	0.102	0.058
	0.121	0.152	0.138
NFI	0.027***	0.068***	0.016
	5.80E-06	1.62E-05	0.071

Conclusion

- Conventional import demand function loses its significance in the long run
- TOT and foreign exchange availability help to smooth out the residuals of the conventional import demand function
- From 1980's to 2000 falling net capital inflows explain the slow growth of imports relative to GDP
- Subsequent recovery for import demand after 2000 led to 2008 balance of payments crisis when imports started catching up.